EconPapers    
Economics at your fingertips  
 

Probabilistic forecasting of schedule performance using polynomial function

Abdelazeem S. Abdelazeem, Ahmed H. Ibrahim and Hossam E. Hosny

International Journal of Information and Decision Sciences, 2016, vol. 8, issue 4, 358-377

Abstract: Using the progress S-curve as a tool for schedule performance forecasting for ongoing projects can improve the capability of project managers for making informed decisions. The objective of this paper is to provide a reliable estimating for the progress S-curve, which leads to better forecast for both the estimated duration at completion (EDAC) and the probability of success (POS) of the project. This study introduces a new probabilistic forecasting method, which is developed on the basis of the polynomial function as a curve fitting technique, for schedule performance control and for risk management of ongoing projects. The polynomial forecasting method (PFM) has been programmed in a graphical user interface (GUI) for Matlab (R2009a) and it can be applied to all types of projects. A comparative study reveals that the PFM provides much more accurate forecasts than those are generated from the conventional deterministic forecasting methods (CDFMs) and as accurate as the critical path method (CPM). Moreover, the PFM provides confidence bounds for predictions, which in turn can help the project managers to make better informed decisions in the form of corrective and/or preventive actions.

Keywords: cost control; earned value; probabilistic forecasting; schedule performance; polynomial function; time control; project management; project scheduling; curve fitting; graphical user interface; GUI. (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=80454 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijidsc:v:8:y:2016:i:4:p:358-377

Access Statistics for this article

More articles in International Journal of Information and Decision Sciences from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijidsc:v:8:y:2016:i:4:p:358-377