EconPapers    
Economics at your fingertips  
 

A case study on machine learning and classification

Amit Kumar and Bikash Kanti Sarkar

International Journal of Information and Decision Sciences, 2017, vol. 9, issue 2, 179-208

Abstract: As a young research field, the machine learning has made significant progress and covered a broad spectrum of applications for the last few decades. Classification is an important task of machine learning. Today, the task is used in a vast array of areas. The present article provides a case study on various classification algorithms (under machine learning), their applicability and issues. More specifically, a step by step progress on this area is discussed in this paper. Further, an experiment is conducted over 12 real-world datasets drawn from University of California, Irvine (UCI, a machine learning repository) using four competent individual learners namely, C4.5 (decision tree-based classifier), Naïve Bayes, k-nearest neighbours (k-NN), neural network and two hybrid learners: Bagging (based on decision tree) and (fuzzy + rough-set + k-NN: a hybrid system) for head to head comparison of their classification performance. Their merits and demerits (as discussed in this article) are analysed accordingly with the obtained results.

Keywords: machine learning; classification; applicability; performance; hybrid; prediction; accuracy; classifier. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.inderscience.com/link.php?id=84885 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijidsc:v:9:y:2017:i:2:p:179-208

Access Statistics for this article

More articles in International Journal of Information and Decision Sciences from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijidsc:v:9:y:2017:i:2:p:179-208