EconPapers    
Economics at your fingertips  
 

Comparative study on IDS using machine learning approaches for software defined networks

K. Muthamil Sudar and P. Deepalakshmi

International Journal of Intelligent Enterprise, 2020, vol. 7, issue 1/2/3, 15-27

Abstract: Software defined networking (SDN) is an emerging network approach that separates the data plane from control plane and enables programmable features to efficiently handle the network configuration in order to improve network performance and monitoring. Since SDN contains the logically centralised controller which controls the entire network, the attacker mainly focuses on causing vulnerability towards the controller. Hence there is a need of powerful tool called intrusion detection system (IDS) to detect and prevent the network from various intrusions. Therefore, incorporation of IDS into SDN architecture is essential one. Nowadays, machine learning (ML) approaches can provide promising solution for the prediction of attacks with more accuracy and with low error rate. In this paper, we surveyed about some machine learning techniques such as naive Bayes, decision tree, random forest, multilayer perceptron algorithms for IDS and compare their performance in terms of attack prediction accuracy and error rate. Additionally, we also discussed about the background of SDN, security issues in SDN, overview of IDS types and various machine learning approaches with the knowledge of datasets.

Keywords: intrusion detection system; IDS; machine learning; software defined networking; SDN; naive Bayes; decision trees; random forest; multilayer perceptron; datasets. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=104642 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijient:v:7:y:2020:i:1/2/3:p:15-27

Access Statistics for this article

More articles in International Journal of Intelligent Enterprise from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijient:v:7:y:2020:i:1/2/3:p:15-27