EconPapers    
Economics at your fingertips  
 

A privatised approach in enhanced spam filtering techniques using TSAS over cloud networks

P. Mano Paul and I. Diana Jeba Jingle

International Journal of Intelligent Enterprise, 2022, vol. 9, issue 3, 332-343

Abstract: Major problem over cloud networks is the effect of malicious code that protrudes its own activity without intend of network user in resource sharing. One such activity is the spam-filtering techniques which assumes the data with training and testing sets and also rely on fundamental classification through distribution. A privatised spam filtering approach is a classic problem which automatically recognises user context and incoming mail information relevance. To filter mail contents learning based methods, probabilistic based method trying to improve their accuracy but they cannot attain an improvement in identifying suspicious contents and also in segregating legitimate mail entries. Here a novel representation of structured abstraction scheme (SAS) used to generate abstraction in e-mail process using HTML tag content in e-mail and its algorithm for filtering such process of spam filtering is depicted. In this SAS methodology near duplicate matching process with HTML tag ordering will be processed and newly assigned position ordering were deliberated. The experimental setup shows that there will be a great improvement while filtering spam in accuracy of e-mail content while sharing in cloud networks.

Keywords: spam detection; abstraction scheme; spam ontology; privatised e-mail spam filtering; cloud networks. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=123759 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijient:v:9:y:2022:i:3:p:332-343

Access Statistics for this article

More articles in International Journal of Intelligent Enterprise from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijient:v:9:y:2022:i:3:p:332-343