Canonical form of partial decision list
Hao Shao,
Rui Xu and
Feng Tao
International Journal of Industrial and Systems Engineering, 2015, vol. 19, issue 3, 422-432
Abstract:
Nowadays, rule mining technologies are widely applied in various areas including management science and operations research, with the objective to find the underlying pattern and tendency as soon as possible in a large dataset as well as to reduce the cost. However, in many real applications, we are often confronted with incomplete datasets and consequently it is not able for us to induce the perfect decision list. To alleviate this problem, we try to incorporate with partial decision lists even the data is incomplete. This method can enable us to respond quickly to real changes of the world. Although partial decision lists shed light on this promising research aspect, one problem is that, to the best of our knowledge, there exists no canonical form of partial decision lists. In this paper we try to provide the canonical form in order to facilitate researchers who are interested in developing new methods for rule mining with incomplete datasets.
Keywords: rule mining; partial classification; partial decision lists; canonical form; incomplete data. (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=68225 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:19:y:2015:i:3:p:422-432
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().