EconPapers    
Economics at your fingertips  
 

An enhanced software defect prediction model with multiple metrics and learners

Shihai Wang, He Ping and Li Zelin

International Journal of Industrial and Systems Engineering, 2016, vol. 22, issue 3, 358-371

Abstract: Defect prediction is a critical technique for achieving high reliability software. Defect prediction models based on software metrics are able to predict which modules are fault-prone, which in turn. The prediction results would make the software developers to pay more attentions to these high-risk modules. For software defect prediction modelling, machine learning techniques have been widely employed. Model selection problem is always a challenge for generating an efficient predictor with a satisfied performance which is also always difficult to achieve. In this paper, a software defect prediction modelling framework based on multi-metric space and multi-type learning models is proposed. Different types of component classifiers and different software metric sets are used to build a software defect prediction ensemble model with the increment on the diversity of ensemble learning as far as possible. The proposed model is fully investigated by using a set of real project data from NASA MDP, the experimental results reveal that the model effectively improve the generalisation performance and the predictive accuracy.

Keywords: software defects; defect prediction; fault proneness; ensemble learning; software metrics; prediction modelling; software reliability; software development; software faults; software errors. (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=74711 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:22:y:2016:i:3:p:358-371

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:22:y:2016:i:3:p:358-371