One vendor-one retailer in vendor managed inventory problem with stochastic demand
Cahyono Sigit Pramudyo and
Huynh Trung Luong
International Journal of Industrial and Systems Engineering, 2017, vol. 27, issue 1, 90-106
Abstract:
One of the basic problems in supply chain operation is lack of information exchanges related to inventory between vendor and retailer. Vendor managed inventory (VMI) provides a good approach to handle this problem. VMI has been proven to reduce cost and improve customer service level. This research aim is to develop a VMI model for the system with one vendor and one retailer to minimise the total system cost. The model is developed for (t, q) policy where the retailer's cycle time is fixed. Due to the complexity nature of the model, simulation-optimisation using genetic algorithm is employed to determine the decision variables which are the retailer's lot size, the vendor's lot size, and the number of replenishments in a vendor cycle. Numerical experiments are conducted to show how the proposed model works. Sensitivity analysis is also conducted to understand the effects of some input parameters.
Keywords: vendor managed inventory; VMI; genetic algorithm; stochastic demand. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=85756 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:27:y:2017:i:1:p:90-106
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().