Research on interval triangular fuzzy multi-attribute fault diagnosis methods based on the grey relation grade
Yin Liu and
Zhaoqin Lu
International Journal of Industrial and Systems Engineering, 2018, vol. 28, issue 3, 331-345
Abstract:
Considering the fuzzy multi-attribute problems of components' failure information, a fault diagnosis model of a Bayesian network based on the interval triangular fuzzy multi-attribute decision method was built. First, the fault multi-attribute hierarchies were represented as a Bayesian network structure by Bayesian network causal dependencies, which reduced the complexity of the multi-attribute hierarchy. Second, in the condition that weight information is completely unknown, grey correlation optimal models were constructed based on the grey correlation analysis method. Furthermore, faulty components were sorted and the component with the highest value was optimised, and the calculation method of interval triangle fuzzy multi-attribute decision based on the grey correlation was given, which realised the fault diagnosis of the system fuzzy multiple-attribute problem. Finally, the method was applied in an analysis of a case of fault diagnosis on a CNC machine tool servo system with a low voltage alarm, which verified the effectiveness of the method.
Keywords: grey correlation degree; interval triangle; multiple-attribute decision; Bayesian network; fault diagnosis. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=89743 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:28:y:2018:i:3:p:331-345
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().