EconPapers    
Economics at your fingertips  
 

Adaptive online successive constant rebalanced portfolio based on moving window

Jin'an He, Xingyu Yang, Hong Lin and Yong Zhang

International Journal of Industrial and Systems Engineering, 2020, vol. 34, issue 1, 107-123

Abstract: In the non-stationary financial market, considering that earlier observations may have little or no relevance to the current investment decision making, we design two kinds of adaptive online portfolio strategies only based on recent historical data. Firstly, we design an adaptive online portfolio strategy by linearly combining the last portfolio and the best constant rebalanced portfolio corresponding to the recent historical data, which we call moving window. We determine the length of the moving window by adaptive learning. More precisely, we consider the strategies that always adopt the best constant rebalanced portfolio corresponding to the moving window of different fixed lengths as different experts, and at the beginning of the current period, we choose the length of moving window the same as the expert achieving maximum current cumulative return. Furthermore, we determine the length of moving window by only using the recent historical data to adaptively learn, and design another adaptive online portfolio strategy. We present numerical analysis by using real stock data from the US and Chinese markets, and the results illustrate that our strategies perform well, compared with some benchmark strategies and existing online portfolio strategies.

Keywords: online portfolio selection; investment strategy; moving window; adaptive algorithm. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.inderscience.com/link.php?id=104316 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:34:y:2020:i:1:p:107-123

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:34:y:2020:i:1:p:107-123