EconPapers    
Economics at your fingertips  
 

Fleet dimensioning and scheduling in the Brazilian ethanol industry: a fuzzy logic approach

Henrique Ewbank, Peter Wanke and Henrique L. Correa

International Journal of Industrial and Systems Engineering, 2020, vol. 34, issue 1, 65-83

Abstract: This work solves a real-world multi-depot vehicle routing problem (MDVRP) with a homogeneous fleet and capacitated depots. A pipeline company wants to establish a vehicle policy in order to own part of its fleet and serve its customers for a period of one year. The company also wants to know the schedule of the visits for collecting ethanol from 261 producers and taking it to their three terminals located in Brazil. This problem presents uncertain demand, since weather conditions impact the final crop and uncertain depot capacity. Due to the vagueness of managers' speech, this problem also presents uncertain travel time. In this paper, fuzzy logic is used to model uncertainty and vagueness and to split the initial instance into smaller ones. Besides solving a real-world problem with fuzzy demand, fuzzy depot capacity and fuzzy travel time, this paper contributes with a decision making tool that reports different solutions for different uncertainty levels.

Keywords: multi-depot vehicle routing problem; MDVRP; fuzzy logic; job scheduling; real-world problem; expert system. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=104318 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:34:y:2020:i:1:p:65-83

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:34:y:2020:i:1:p:65-83