Two-stage efficiency-based approach to biofuel supply chain logistics network design under the risk of disruptions
Jae-Dong Hong
International Journal of Industrial and Systems Engineering, 2020, vol. 36, issue 3, 339-360
Abstract:
This paper deals with a design problem for the biofuel supply chain logistics network (BSCLN) under the risk of disruptions. Under a circumstance of disruptions, the BSCLN design problem should deal with multiple goals. This paper proposes an innovative procedure for combining a goal programming (GP) approach and the two-stage network data envelopment analysis (NDEA). The GP model will generate various BSCLN configurations that depend on the weights assigned to the goals. Then, the two-stage NDEA is applied to find the overall efficiency of BSCLN and to identify most efficient BSCLN schemes. Through a case study using the real data on the disaster events in South Carolina, the applicability of the proposed procedure is demonstrated. It is observed that the proposed procedure performs well with respect to designing and identifying the efficient and robust BSCLN schemes, which would be able to attract potential investors who are interested in investing in the biofuel industry.
Keywords: biofuel supply chain logistics network; BSCLN; goal programming; two-stage network; data envelopment analysis; overall efficiency. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=110938 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:36:y:2020:i:3:p:339-360
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().