EconPapers    
Economics at your fingertips  
 

Torque ripple mitigation in FCS-MPDTC of PMSM drive using an adaptive fuzzy logic modulator

Islam Benhamida, Aissa Ameur and Katia Kouzi

International Journal of Industrial and Systems Engineering, 2021, vol. 37, issue 2, 179-196

Abstract: This paper presents the use of the fuzzy logic duty cycle concept in the finite-control-set model predictive direct torque control (FCS-MPDTC) strategy to mitigate the torque ripples of a surface-mounted permanent magnet synchronous motor (PMSM) drive. In fact, MPDTC is a simple and powerful tool to overcome the main drawbacks associated with the commonly used control strategies like direct torque control (DTC) and field-oriented control (FOC). However, the conventional-MPDTC selects only one voltage vector (VV) per sampling period and this procedure leads to increase relatively the torque ripple. In order to further improve the torque control performance, an adaptive fuzzy logic-based duty cycle modulation is utilised and two VV's instead of single VV are applied during the whole control cycle. The performances of the proposed control scheme are simulated and compared to those obtained with conventional-MPDTC. The simulation results show that the proposed AFLM-MPDTC can effectively mitigate the torque ripples, even under severe operating conditions.

Keywords: permanent magnet synchronous motor; PMSM; MPDTC; finite control set; FCS; torque ripple; duty cycle; adaptive fuzzy logic modulator; AFLM. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=112882 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:37:y:2021:i:2:p:179-196

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:37:y:2021:i:2:p:179-196