Buffer allocation in asynchronous serial production systems with Bernoulli machines during transients
Wenchong Chen,
Hongwei Liu and
Ershi Qi
International Journal of Industrial and Systems Engineering, 2021, vol. 39, issue 2, 176-204
Abstract:
Some asynchronous production systems can never be truly balanced. This phenomenon demands the incorporation of asynchronism and unreliability in buffer allocation problems (BAPs). This paper reports a BAP in an asynchronous serial production system with Bernoulli machines. A profit-based integer programming model is formulated to maximise the throughput and minimise the buffer capacity simultaneously. Because the production run is finite in the current mass customisation environment, a transient analysis is used to estimate the system performance. Piecewise closed-form expressions are derived for a two-machine case based on Markovian structures. For M > 2 machine lines, an efficient recursive algorithm based on aggregation is developed. Considering the nonlinear characteristic of this BAP, a dynamic-objective particle swarm optimisation with neighbourhood searching is developed. This approach is verified by a case from an assembly plant. The results demonstrate that the programming method can increase the system profit by 1.85%.
Keywords: buffer allocation; asynchronous serial production line; Bernoulli machines; transient analysis; dynamic-objective particle swarm optimisation; DOPSO. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=118263 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:39:y:2021:i:2:p:176-204
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().