A multi-level green reverse logistics network design for single manufacturer and integration of return distribution warehouses in supply chain management
Shima Shirvani and
Mohammad Reza Shahraki
International Journal of Industrial and Systems Engineering, 2022, vol. 41, issue 4, 438-454
Abstract:
This study develops a linear programming model in a closed loop supply chain network including supply, production, distribution, collection, recycling and disposal centres taking into account variables of route, vehicle and volume of the vehicle. Multilevel and multi-product modes are also considered for single manufacturer and integration of return distribution warehouses and processing costs are also taken into account in locations. All modifiable returned goods are shipped to production and distribution centres to be provided to the consumer directly in the logistics process. The purpose of the model is to reduce costs of the green reverse logistics network. The proposed model reduces the cost of transportation according to the vehicle, route and vehicle size; ultimately reduces the costs of reverse logistics network distribution. An example is reviewed for validation of the proposed model and finally general conclusions are presented. The results show that the proposed model is able to determine the best route, type of vehicle and shipping volume and in the reverse logistics network.
Keywords: reverse logistics; supply chain; return distribution cost; returned products. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=124998 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:41:y:2022:i:4:p:438-454
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().