Personalised resource recommendation method for collaborative tagging system based on machine learning
Xiaofei Liu
International Journal of Industrial and Systems Engineering, 2022, vol. 42, issue 1, 1-19
Abstract:
In order to overcome the low feasibility of traditional resource recommendation methods, this paper proposes a personalised resource recommendation method based on machine learning. Firstly, the user-based collaborative filtering algorithm is used to calculate user personalised similarity, and then content-based collaborative filtering algorithm is used to calculate resource content similarity through cosine similarity. Combined with user similarity and resource content similarity, a hybrid computing model of resource similarity is established, and personalised recommendation is realised through statistical machine learning. The experimental results show that: the F-measure value of the method can reach 0.97, the coverage rate is maintained above 50%, the popularity is above 0.8, and the MAE value is always the minimum, and its precision is always higher than that of the contrast method. It shows that the proposed method can effectively improve the precision and feasibility of personalised recommendation results.
Keywords: machine learning; collaborative tagging system; personalised resource recommendation; similarity. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=126023 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:42:y:2022:i:1:p:1-19
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().