EconPapers    
Economics at your fingertips  
 

Efficient Bayesian optimisation of bounded general loss function for robust parameter design

Ying Chen and Mei Han

International Journal of Industrial and Systems Engineering, 2024, vol. 47, issue 2, 194-215

Abstract: Robust parameter design (RPD) has been generally employed to minimise the system quality loss caused by noise perturbation via setting control factors in engineering design. Bayesian optimisation algorithms have received increasing attention for RPD, which includes establishing the Kriging model and developing acquisition functions (AFs). In RPD, the quality loss function method is a common method to calculate the response deviation from a target value. The existing literature mainly focuses on setting the loss function as a quadratic function for easier calculation, while it is not always reasonable due to its unboundedness. In this paper, we propose three efficient Bayesian algorithms for bounded general loss functions for finding the optimal design of control factors based on a Kriging model. We develop a Monte Carlo sampling method to approximate the proposed AFs. Three numerical examples and a rocket injector case are used to demonstrate the effectiveness of the proposed algorithms.

Keywords: Bayesian optimisation; robust parameter design; RPD; bounded general loss function; acquisition function; Gaussian process model. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=138893 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:47:y:2024:i:2:p:194-215

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:47:y:2024:i:2:p:194-215