A conceptual human safety system in an industrial shared workspace with a collaborative robot
Marcos Vido and
Athos Paulo Tadeu Pacchini
International Journal of Industrial and Systems Engineering, 2025, vol. 49, issue 1, 119-138
Abstract:
By working side-by-side with humans in a production environment, collaborative robots (cobots) can be helpful and versatile and can efficiently support activities in modern factories. A review of the extant literature identified an opportunity to build user-friendly human-robot interfaces and confirmed the need to enhance the perceptions of human safety conditions and requirements during interactions with cobots when performing manufacturing tasks. Therefore, this study seeks to deepen the knowledge regarding the use of cobots, based on introducing novel safety system architecture for human-robot collaboration in a shared workspace. The degree of collaboration is investigated, focusing on the safety requirements when human operators perform tasks involving cooperation between humans and cobots in a combined workstation. As a result, this study extends the previous literature by proposing a conceptual safety system architecture that is especially useful for covering safety requirements during the design stage of a collaborative workstation so as to minimise safety risks to humans, resulting in a dynamic safety framework that allows for the use of advanced robotics in an Industry 4.0 environment.
Keywords: collaborative robot; safety; human-robot collaboration; HRC; cyber-physical systems; CPSs; Industry 4.0. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=144084 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:49:y:2025:i:1:p:119-138
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().