EconPapers    
Economics at your fingertips  
 

Classification, feature selection and prediction with Neural-network Taguchi System

Bharatendra K. Rai

International Journal of Industrial and Systems Engineering, 2009, vol. 4, issue 6, 645-664

Abstract: Mahalanobis-Taguchi System (MTS) is often compared with artificial neural networks as both methodologies share common application areas. However, the comparison has been strictly limited to latter as a standalone process. Neural networks in a MTS framework, due to availability of a large array of architectures, has potential to lend flexibility needed to deal with a wide variety of application areas. This paper proposes a Neural-network Taguchi System (NTS) approach that incorporates neural networks in a MTS framework and consists of four stages viz., plan, validate, identify, and monitor. The workability of the proposed approach is illustrated using a tool-breakage prediction problem.

Keywords: MTS; Mahalanobis-Taguchi system; multilayer perceptron; NTS; neural networks; Taguchi methods; tool breakage prediction; threshold level; tool failure. (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=26769 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:4:y:2009:i:6:p:645-664

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:4:y:2009:i:6:p:645-664