A bi-tour ant colony optimisation framework for vertical partitions
Chun-Hung Cheng,
Angappa Gunasekaran and
Kwan-Ho Woo
International Journal of Industrial and Systems Engineering, 2011, vol. 7, issue 3, 341-356
Abstract:
Clustering refers to a process of grouping together similar objects while separating out the dissimilar objects. In this work, we consider block clustering in vertical partitioning. Block clustering is a specific clustering method, which clusters the sets of objects and their associated attributes (descriptors) together, simultaneously, in a solution matrix. For this specific problem we propose using a bi-tour ant colony optimisation. To show the quality of the new proposed approach, we conduct an extensive computational study and show that our method is performed better than some traditional clustering methods, such as genetic algorithms and average linkage clustering.
Keywords: block clustering; ACO; ant colony optimisation; vertical partitioning; bi-tour frameworks; vertical partitions; similar objects; dissimilar objects; clusters; associated attributes; descriptors; solution matrixes; computational studies; genetic algorithms; average linkages; industrial engineering; systems engineering. (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=38983 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:7:y:2011:i:3:p:341-356
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().