EconPapers    
Economics at your fingertips  
 

Network dynamics in friend recommendation: a study of Indian engineering students

Pradip Swarnakar, Ajay Kumar and Himanshu Tyagi

International Journal of Information Technology and Management, 2017, vol. 16, issue 3, 287-300

Abstract: Social networks are the frequently used service which over the past few years, have grown by leaps and bounds. In this study, a survey of engineering students has been conducted to find out the most relevant socio-demographic and webographic factors that are considered by users while sending/accepting friend requests. An extensive survey has been conducted and the responses were used to determine the influence of various factors in friend request attributes. Based on the collected responses, logistic regression and artificial neural network models have been developed for predicting the users' friend request attributes. A comparative performance analysis of these models to predict the friend request attributes has also been done. The results indicate that neural network model outperformed the logistic regression model when data are nonlinear. The study also shows that among all the factors, users' gender, photographs, hometown, age, and shared interests are the most significant factors.

Keywords: social networks; Facebook; user perception of friendship; logistic regression; artificial neural network; ANN. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=85026 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:16:y:2017:i:3:p:287-300

Access Statistics for this article

More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijitma:v:16:y:2017:i:3:p:287-300