EconPapers    
Economics at your fingertips  
 

SGP: a social network sampling method based on graph partition

Xiaolin Du, Dan Wang, Yunming Ye, Yan Li and Yueping Li

International Journal of Information Technology and Management, 2019, vol. 18, issue 2/3, 227-242

Abstract: A representative sample of a social network is essential for many internet services that rely on accurate analysis. A good sampling method for social network should be able to generate small sample network with similar structures and distributions as its original network. In this paper, a sampling algorithm based on graph partition, sampling based on graph partition (SGP), is proposed to sample social networks. SGP firstly partitions the original network into several sub-networks, and then samples in each sub-network evenly. This procedure enables SGP to effectively maintain the topological similarity and community structure similarity between the sampled network and its original network. Finally, we evaluate SGP on several well-known datasets. The experimental results show that SGP method outperforms seven state-of-the-art methods.

Keywords: sampling algorithms; social networks; graph partition; community structure; topology structure. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=99809 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:18:y:2019:i:2/3:p:227-242

Access Statistics for this article

More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijitma:v:18:y:2019:i:2/3:p:227-242