EconPapers    
Economics at your fingertips  
 

Automatic recognition and defect compensation for calf leather

Yu-Tang Lee and Chung Yeh

International Journal of Information Technology and Management, 2020, vol. 19, issue 2/3, 93-117

Abstract: Various defects existed on the surface of calf leather could affect its usable area and the salable price. No international criterion specifies the compensatory credits for calf leather surface defects which cause additional cost between supplier and purchaser in complicated negotiation process. This paper is to develop an artificial intellectual technique to implement the automatic recognition for types of leather defect and to compensate for leather defective unusable area in order to bridge trading gap. Data of calf defects from sample is extracted to develop an automatic recognition system via artificial intellectual techniques – ANN learning process is introduced to make a sustainable automatic recognition system used to identify types of categories for upcoming leathers under inspection, business transaction; the mean error rate of recognising leather defect is less than 2.16% and the mean deviation rate for compensation area is 0.03% under this simulated transaction.

Keywords: leather surface defects; artificial neural network; ANN; digit image processing; mean error rate of recognising leather defect; mean deviation rate for the leather area. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=106211 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:19:y:2020:i:2/3:p:93-117

Access Statistics for this article

More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijitma:v:19:y:2020:i:2/3:p:93-117