EconPapers    
Economics at your fingertips  
 

A dynamic programming-based approach for cloud instance type selection and optimisation

Pengwei Wang, Wanjun Zhou, Caihui Zhao, Yinghui Lei and Zhaohui Zhang

International Journal of Information Technology and Management, 2020, vol. 19, issue 4, 358-375

Abstract: With the advantages of cloud computing gradually highlighted, users increasingly want to deploy their applications and services on the cloud to reduce costs and obtain high computing capacity. Nowadays, cloud providers (e.g., Amazon, Microsoft) at home and abroad provide a large amount of cloud instance types optimised to fit different use cases, such as compute optimised and memory optimised. Due to the potentially large quantity of cloud instance types in the public cloud market, it is often a challenge for users to select an optimal set of cloud instance types subject to limited resource capacity. In this paper, a dynamic programming-based approach is proposed for cloud instance type selection, which can provide optimal combination of cloud instance types to users. Experiments are performed based on real-world cloud information to evaluate the proposed method.

Keywords: cloud computing; cloud instance type; dynamic programming; selection; optimisation; knapsack problem. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=110240 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:19:y:2020:i:4:p:358-375

Access Statistics for this article

More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijitma:v:19:y:2020:i:4:p:358-375