Risk assessment method of power grid construction project investment based on grey relational analysis
Fulei Chen,
Mingzhu Sun and
Lei Shen
International Journal of Information Technology and Management, 2024, vol. 23, issue 3/4, 244-260
Abstract:
In view of the problems of low accuracy, long time consuming and low efficiency of the existing engineering investment risk assessment method; this paper puts forward the investment risk assessment method of power grid construction project based on grey correlation analysis. Firstly, classify the risks of power grid construction project; secondly, determine the primary index and secondary index of investment risk assessment of power grid construction project; then construct the correlation coefficient matrix of power grid project investment risk to calculate the correlation degree and weight of investment risk index; finally, adopt the grey correlation analysis method to construct investment risk assessment function to realise investment risk assessment. The experimental results show that the average accuracy of evaluating the investment risk of power grid construction projects using the method is 95.08%, and the maximum time consuming is 49 s, which proves that the method has high accuracy, short time consuming and high evaluation efficiency.
Keywords: relevance; grey correlation analysis; forward backward algorithm; correlation matrix; weight calculation. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=139576 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:23:y:2024:i:3/4:p:244-260
Access Statistics for this article
More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().