A risk identification method for abnormal accounting data based on weighted random forest
Yan Shi
International Journal of Information Technology and Management, 2024, vol. 23, issue 3/4, 304-317
Abstract:
In order to improve the identification accuracy, accuracy and time-consuming of traditional financial risk identification methods, this paper proposes a risk identification method for financial abnormal data based on weighted random forest. Firstly, SMOTE algorithm is used to collect abnormal financial data; secondly, the original accounting data is decomposed into features, and the features of abnormal data are extracted through random forests; then, the index weight is calculated according to the entropy weight method; finally, the negative gradient fitting is used to determine the loss function, and the weighted random forest method is used to solve the loss function value, and the recognition result is obtained. The results show that the identification accuracy of this method can reach 99.9%, the accuracy rate can reach 96.06%, and the time consumption is only 6.8 seconds, indicating that the risk identification effect of this method is good.
Keywords: SMOTE algorithm; weighted random forest; loss function; negative gradient fitting. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=139575 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:23:y:2024:i:3/4:p:304-317
Access Statistics for this article
More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().