Quantitative evaluation method of ideological and political teaching achievements based on collaborative filtering algorithm
Hua Wang
International Journal of Information Technology and Management, 2024, vol. 23, issue 3/4, 330-344
Abstract:
In order to overcome the problems of large error, low evaluation accuracy and long evaluation time in traditional evaluation methods of ideological and political education, this paper designs a quantitative evaluation method of ideological and political education achievements based on collaborative filtering algorithm. First, the evaluation index system is constructed to divide the teaching achievement evaluation index data in a small scale; then, the quantised dataset is determined and the quantised index weight is calculated; finally, the collaborative filtering algorithm is used to generate a set with high similarity, construct a target index recommendation list, construct a quantitative evaluation function and solve the function value to complete the quantitative evaluation of teaching achievements. The results show that the evaluation error of this method is only 1.75%, the accuracy can reach 98%, and the time consumption is only 2.0 s, which shows that this method can improve the quantitative evaluation effect.
Keywords: collaborative filtering; ideological and political education; quantitative analysis; Jaccard coefficient; neighbour set. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=139573 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:23:y:2024:i:3/4:p:330-344
Access Statistics for this article
More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().