EconPapers    
Economics at your fingertips  
 

An enterprise financial credit risk measurement method based on differential evolution algorithm

Lixia Du and Xin An

International Journal of Information Technology and Management, 2025, vol. 24, issue 1/2, 67-77

Abstract: In order to reduce the time cost and risk misjudgement rate of financial information risk measurement, this paper proposes a new enterprise financial credit risk measurement method based on differential evolution algorithm. Firstly, after preprocessing the enterprise financial credit risk data and determining the location of the clustering centre, a differential evolution automatic clustering model is constructed. Secondly, according to the clustering results, the differential evolution algorithm is used to measure the basic process of enterprise financial credit risk. Finally, the improved differential evolution algorithm is used for iterative measurement to achieve enterprise financial credit risk data measurement. The experimental results show that the time cost of the proposed method for enterprise financial credit risk measurement can be controlled within 0.4 s, and the error rate is not more than 1% under the condition of 1,000 data.

Keywords: differential evolution algorithm; corporate finance; credit risks; measurement method. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=144106 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:24:y:2025:i:1/2:p:67-77

Access Statistics for this article

More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijitma:v:24:y:2025:i:1/2:p:67-77