A performance evaluation method of new business model based on grey correlation algorithm
Yan Wang
International Journal of Information Technology and Management, 2025, vol. 24, issue 1/2, 92-105
Abstract:
A new business model performance evaluation method based on grey correlation algorithm is designed to solve the problems of large evaluation error and low key of screening indicators in the new business model performance evaluation. First, analyse the new business model and screen the performance evaluation indicators of the new business model. Then, the clustering algorithm is used to determine the cluster family of each index, extract the performance evaluation index characteristics of the new business model, and construct the performance evaluation index system. Finally, the grey correlation algorithm is used to determine the grey correlation degree between the indicators, quantify the evaluation indicators, build a grey correlation model for the performance evaluation of the new business model, and realise the performance evaluation. The experimental results show that the evaluation error of the proposed evaluation method is only 2%, and the key degree of the selected index is higher than 90%, which is increased by more than 5%. This method has higher practical application value.
Keywords: grey correlation algorithm; new business model; performance evaluation; clustering algorithm; main sequence; correlation sequence; consistency check. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=144112 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:24:y:2025:i:1/2:p:92-105
Access Statistics for this article
More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().