A hybrid approach to evaluate employee performance using MCDA and artificial neural networks
Malik Haddad and
David A. Sanders
International Journal of Management and Decision Making, 2024, vol. 23, issue 1, 58-76
Abstract:
A new hybrid approach for employee performance evaluation based on multiple criteria decision analysis (MCDA) and artificial neural network (ANN) is presented. This is the first time this type of ANNs has been used for this application. A deep ANN is created. A MCDA method used randomly generated sets for training and testing the ANN. The network provided 93.63% training accuracy and 91.91% testing accuracy when tested against the training and testing sets respectively. The new approach could be transformed into a generic employee evaluation tool suitable to accommodate any number of employees and evaluation criteria using transfer-learning. A real-life employee evaluation problem is used as an example. Six employees and six evaluation criteria are considered. The new approach successfully identified the employee most eligible for promotion and ranked the other employees according to their performance.
Keywords: artificial neural networks; employee evaluation; employee performance; MCDA; transfer-learning. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=135301 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmdma:v:23:y:2024:i:1:p:58-76
Access Statistics for this article
More articles in International Journal of Management and Decision Making from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().