Multi-objective optimisation using genetic algorithm based clustering for multi-depot heterogeneous fleet vehicle routing problem with time windows
Lahcene Guezouli and
Samir Abdelhamid
International Journal of Mathematics in Operational Research, 2018, vol. 13, issue 3, 332-349
Abstract:
Efficient routing and scheduling of vehicles has significant economic implications for both the public and private sectors. For this purpose, we propose in this study a decision support system which aims to optimise the classical capacitated vehicle routing problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that we call the multi-depot heterogeneous vehicle routing problem with time window (MDHVRPTW) by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles...., and we solve this problem by proposing a new scheme based on the application of the bio-inspired genetic algorithm heuristics and by embedding a clustering algorithm within a VRPTW optimisation frame work, that we will specify later. Computational experiments with the benchmark test instances confirm that our approach produces acceptable quality solutions compared with the best previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that our proposed genetic algorithm is effective in solving the MDHVRPTW problem and hence has a great potential.
Keywords: multi-depot vehicle routing problem; clustering; routing; scheduling; genetic algorithm; heterogeneous vehicle routing problem. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=94850 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmore:v:13:y:2018:i:3:p:332-349
Access Statistics for this article
More articles in International Journal of Mathematics in Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().