EconPapers    
Economics at your fingertips  
 

A modified two-step method for solving interval linear programming problems

Mehdi Allahdadi

International Journal of Mathematics in Operational Research, 2019, vol. 15, issue 2, 181-196

Abstract: In this paper, we propose a new method for solving interval linear programming (ILP) problems. For solving the ILP problems, two important items should be considered: feasibility (i.e., solutions satisfy all constraints) and optimality (i.e., solutions are optimal for at least a characteristic model). In some methods, a part of the solution space is infeasible (i.e., it violates any constraints) such as the best and worst cases method (BWC) proposed by Tong in 1994 and two-step method (TSM) proposed by Huang et al. in 1995. In some methods, the solution space is completely feasible, but is not completely optimal (i.e., some points of the solution space are not optimal) such as modified ILP method (MILP) proposed by Zhou et al. in 2009 and improved TSM (ITSM) proposed by Wang and Huang in 2014. Firstly, basis stability for the ILP problems is reviewed. Secondly, the solving methods are analysed from the point of view of the feasibility and optimality conditions. Later, a new method which modifies the TSM by using the basis stability approach is presented. This method gives a solution space that is not only completely feasible, but also completely optimal.

Keywords: basis stability; feasibility; interval linear programming; ILP; optimality; two-step method; TSM. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=101620 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmore:v:15:y:2019:i:2:p:181-196

Access Statistics for this article

More articles in International Journal of Mathematics in Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijmore:v:15:y:2019:i:2:p:181-196