Keynesian resurgence: financial stimulus and contingent claims modelling
Ephraim Clark,
Sovan Mitra and
Octave Jokung
International Journal of Mathematics in Operational Research, 2020, vol. 17, issue 2, 199-232
Abstract:
Since the commencement of the Global Financial Crisis, a worldwide resurgence in applying Keynesian modelling has occurred, and has been cited as a major factor in averting a worldwide economic depression. A key aspect of Keynesian modelling is that governments gain contingent claims on firms in exchange for financial stimulus. However, there exist few mathematical finance models examining Keynesian modelling, stimulus modelling and the valuation of such government contingent claims. In this paper we provide a new mathematical finance framework for modelling firms and financial stimulus under a Keynesian framework; we apply a stochastic differential equation model, rather than the standard time series models. Our model incorporates fundamental concepts of Keynesian modelling and Keynesian stimulus, which is a new characteristic to current financial models. We model the government's contingent claim on the firm as a real call option, and derive a closed form solution for the value of this option which takes into account firm stimulus. We also derive a solution for the minimum firm value required to exercise the option. We conduct numerical experiments for different firm equilibrium values, firm values, economic cycles and analyse the impact on option and stimulus values.
Keywords: financial crisis; stimulus spending; real options; Keynesian economics; geometric Ornstein-Uhlenbeck. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=109701 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmore:v:17:y:2020:i:2:p:199-232
Access Statistics for this article
More articles in International Journal of Mathematics in Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().