An interior boundary pivotal solution algorithm for linear programmes with the optimal solution-based sensitivity region
Hossein Arsham and
Angappa Gunasekaran
International Journal of Mathematics in Operational Research, 2013, vol. 5, issue 6, 663-692
Abstract:
We have developed a full gradient method that consists of three phases. The initialisation phase provides the initial tableau that may not have a full set of basis. The push phase uses a full gradient vector of the objective function to obtain a feasible vertex. This is then followed by a series of pivotal steps using the sub-gradient, which leads to an optimal solution (if exists) in the final iteration phase. At each of these iterations, the sub-gradient provides the desired direction of motion within the feasible region. The algorithm hits and/or moves on the constraint hyper-planes and their intersections to reach an optimal vertex (if exists). The algorithm works in the original decision variables and slack/surplus space, therefore, there is no need to introduce any new extra variables such as artificial variables. The simplex solution algorithm can be considered as a sub-more efficient. Given a linear programme has a known unique non-degenerate primal/dual solution; we develop the largest sensitivity region for linear programming models-based only the optimal solution rather than the final tableau. It allows for simultaneous, dependent/independent changes on the cost coefficients and the right-hand side of constraint. Numerical illustrative examples are given.
Keywords: linear programming; full gradient simplex algorithm; artificial-free; pivoting algorithm; feasible direction method; simplex standard-form free; big-M free; largest sensitivity region. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=57489 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmore:v:5:y:2013:i:6:p:663-692
Access Statistics for this article
More articles in International Journal of Mathematics in Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().