A parallel hybrid ant colony optimisation approach for job-shop scheduling problem
Haipeng Zhang and
Mitsuo Gen
International Journal of Manufacturing Technology and Management, 2009, vol. 16, issue 1/2, 22-41
Abstract:
In this paper, we combine ACO with some randomised dispatching heuristics and propose a special transition rule for finding the best schedule to the JSP problems. Moreover, a special critical path-based local search is also combined to improve the best solutions by reducing the idle time. In order to gain higher efficiency of the proposed algorithm and avoid the early convergence in local optimal solution, we enhance the hybrid ACO by building a parallel hybrid Ant Colony Optimisation (ph-ACO) algorithm. Some numerical examples are used to demonstrate the performance of the ph-ACO and we can find that the proposed ph-ACO algorithm with Longest Remaining processing Time (LRT) and Longest Remaining processing time Excluding the operation under consideration (LRE) can both improve the efficiency of the algorithm obviously. Furthermore, we also decide the appropriate parameter setting of β is around 2. Finally, after comparing with hybrid Genetic Algorithm (GA) by solving same benchmark problems, the experimental results show the proposed ph-ACO outperforms traditional ACO and hybrid GA.
Keywords: ant colony optimisation; ACO; metaheuristics; genetic algorithms; GAs; critical path; dispatching heuristics; job shop scheduling. (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=21502 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmtma:v:16:y:2009:i:1/2:p:22-41
Access Statistics for this article
More articles in International Journal of Manufacturing Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().