Dexterity control of multi-arm sorting robot based on machine learning
Linyan Pan
International Journal of Manufacturing Technology and Management, 2024, vol. 38, issue 1, 81-94
Abstract:
In order to overcome the problems of large dexterity control error of manipulator joint and poor sorting and positioning accuracy, this paper designs a dexterity control method of multi manipulator sorting robot based on machine learning. Firstly, the attitude of the multi manipulator coordinate system on the rigid body is obtained. Secondly, the translation matrix is constructed by using the translation transformation method. Then, the rotation matrix is constructed to determine the inverse motion law of the robot. Finally, determine the dexterity parameters of the manipulator joint, introduce the machine learning algorithm to calculate the dexterity parameter control error, and correct the error through the activation function to complete the dexterity control. The experimental results show that the error of this method is always less than 0.1% and the positioning accuracy is higher than 90%, which shows that the dexterity control effect of this method is good.
Keywords: machine learning: multi-manipulator; robot; dexterity; translation transformation; rotation matrix; activation function. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=137387 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmtma:v:38:y:2024:i:1:p:81-94
Access Statistics for this article
More articles in International Journal of Manufacturing Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().