Economic investment risk prediction model and algorithm based on data mining method
Yi Chen
International Journal of Manufacturing Technology and Management, 2024, vol. 38, issue 4/5, 283-301
Abstract:
Investment decisions have a broad and far-reaching impact on the operating conditions of the entire enterprise. Once the investment decision is wrong, it will bring huge risks. As a data analysis technology, data mining can simulate mathematical models or algorithms by analysing historical data, which greatly improves the accuracy of prediction. The purpose of this paper is to study the application of data mining technology in the field of investment management. This paper constructs an economic investment risk prediction model based on data mining. The research results show that the sensitive factor affecting the investment status in the model obtained by the data mining algorithm is the quick ratio. When the quick ratio is less than or equal to 1.603, the investment is one year; if the result is greater than 1.603, the investment is five years.
Keywords: investment risk; data mining; cluster analysis; factor analysis; decision tree. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=139492 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:283-301
Access Statistics for this article
More articles in International Journal of Manufacturing Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().