Image dehazing network based on improved convolutional neural network
Changxiu Dai
International Journal of Manufacturing Technology and Management, 2024, vol. 38, issue 4/5, 302-320
Abstract:
Image dehazing enhances its quality by restoring the actual pixels influenced by poor light and intensity due to environmental and other factors. Hazy images are rectified to improve visibility, guidance, and object recognition through channel attribute corrections. This article introduces a pre-emptive dehazing network (PDN) using an improved convolutional neural network (ICNN) for single to multi-image dehazing. In the proposed method, neural network layers are operated for intensity-based single and multi-feature analysis. The image is split based on intensity pixels for identifying the channel corrections. This channel correction and intensity verifications are processed using CNN in different independent layers. In the CNN training, the channel correction from the hidden layers and pixel correlation from the external dataset is performed for dehazing the image pixels. The dehazed pixels are organised based on the original input organisation for verifying the similarity measure. The proposed method's performance is validated utilising the metrics similarity, error, precision, F1-score, and time complexity.
Keywords: channel correction; convolutional neural network; CNN; image dehazing; pixel correlation; pre-emptive dehazing network; PDN. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=139491 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:302-320
Access Statistics for this article
More articles in International Journal of Manufacturing Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().