EconPapers    
Economics at your fingertips  
 

Roughness characterisation of gas phase micromachining process suitable for fabricating silicon based microsystems

M. Packirisamy, I. Stiharu and L. Flores

International Journal of Manufacturing Technology and Management, 2005, vol. 7, issue 2/3/4, 224-245

Abstract: Non-conventional or advanced machining techniques are becoming the enabling fabrication techniques for many emerging fields including Micro Electro Mechanical Systems (MEMS) or Microsystems Technology (MST). The processes used for MEMS fabrication include standard semiconductor fabrication processes and emerging micromachining techniques. Among the challenges emerging from the manufacturing of MEMS devices, post-processing seems to be one of the most sensitive issues. The non-traditional common post-processing techniques are bulk micromachining and surface micromachining. It has been a challenge for MEMS designers to develop a micromachining technique that is compatible with IC (Integrated Circuits) processes and also capable of making MEMS structures through both bulk and surface micromachining with acceptable surface roughness requirements. The selected micromachining process should not affect the integrity of the free standing structure due to the reduced selectivity and aggressive etch of the adjacent electronic circuitry. Moreover, the integrity of the released structure, the dynamic properties as well as the electrostatic characteristics, are strongly dependent on the achieved roughness of the surfaces produced by the etching process. Hence, this paper presents the surface roughness characterisation of gas phase micromachining with XeF2 that is suitable for fabricating integrated MEMS with both micromechanical and microelectronics components. This paper also presents some fabricated microsystems using this process.

Keywords: atomic force microscope; bulk micromachining; gas phase etching; microelectromechanical systems; MEMS; micromachining; microstructures; microsystems technology; MST; non-conventional machining; surface roughness; scanning electron micrograph; surface micromachining; XeF 2 micromachining; post-processing; non-traditional machining; advanced machining. (search for similar items in EconPapers)
Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=6842 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmtma:v:7:y:2005:i:2/3/4:p:224-245

Access Statistics for this article

More articles in International Journal of Manufacturing Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijmtma:v:7:y:2005:i:2/3/4:p:224-245