EconPapers    
Economics at your fingertips  
 

Forecasting intraday stock price using ANFIS and bio-inspired algorithms

S. Kumar Chandar

International Journal of Networking and Virtual Organisations, 2021, vol. 25, issue 1, 29-47

Abstract: The main focus of this study is to explore the predictability of stock price with variants of adaptive neuro-fuzzy inference system (ANFIS) and suggests a hybrid model to enhance the prediction accuracy. Two variants of ANFIS model are designed which includes genetic algorithm-ANFIS (GA-ANFIS) and particle swarm optimisation-ANFIS (PSO-ANFIS) to forecast stock price more accurately. The standard ANFIS is tuned employing GA and PSO algorithm. The experimental data used in this investigation are stocks traded per minute price of four companies from NSE. Sixteen technical indicators are calculated from the historical prices and used as inputs to the developed models. Prediction ability of the developed models is analysed by varying number of input samples. Numerical results obtained from the simulation confirmed that the PSO-ANFIS model has the potential to predict the future stock price more precisely than GA-ANFIS as well as other earlier methods.

Keywords: adaptive neuro-fuzzy inference system; ANFIS; bio-inspired algorithm; genetic algorithm; intraday day; minute price; particle swarm optimisation; PSO. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=117754 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:25:y:2021:i:1:p:29-47

Access Statistics for this article

More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijnvor:v:25:y:2021:i:1:p:29-47