EconPapers    
Economics at your fingertips  
 

Cloud spot price prediction approach using adaptive neural fuzzy inference system with chaos theory

Zohra Amekraz and Moulay Youssef Hadi

International Journal of Networking and Virtual Organisations, 2022, vol. 26, issue 1/2, 23-46

Abstract: The dynamic pricing of cloud computing is a major challenge for cloud users all over the world. This challenge was first addressed by Amazon under the name of Amazon spot instance market. Cloud users can bid for a spot instance using this market and obtain the requested spot if their bids exceed a dynamically changing spot price. Amazon publicises the spot price but does not reveal how it is determined. In this paper, we perform chaotic time series analysis over the spot price trace. We also develop a chaos based adaptive neural fuzzy inference system (ANFIS) model based on phase-space vectors obtained during the phase of chaotic analysis. Next, we study the effect of chaos existence on the prediction accuracy of the spot price by comparing the proposed chaos-ANFIS model with the baseline ANFIS model (non-chaotic approach). Evaluation results show that the proposed chaos-ANFIS model yields better predictions of spot price compared to the baseline ANFIS model in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE).

Keywords: dynamic pricing; cloud computing; spot instance; spot price; chaotic time series analysis; ANFIS. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=121845 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:26:y:2022:i:1/2:p:23-46

Access Statistics for this article

More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijnvor:v:26:y:2022:i:1/2:p:23-46