An application of neural network algorithm model based on improved multi-expression programming in English language education practice
Yue Feng
International Journal of Networking and Virtual Organisations, 2023, vol. 28, issue 2/3/4, 281-300
Abstract:
In the field of English education, neural network algorithm can effectively predict and evaluate teaching, and significantly improve the quality of education and teaching. Therefore, a neural network English teaching evaluation prediction model based on multi expression programming is proposed. Through the research on neural network and genetic algorithm (GA), it is found that flexible neural tree cannot optimise parameters and results at the same time. Therefore, a neural network algorithm model (MEP) based on multi expression programming is proposed to solve the problem, and the MEP-NN English teaching evaluation model is constructed by optimising the model parameters with evolutionary algorithm. The model is applied to the English teaching process to achieve the evaluation of English teaching quality. The results show that in the mean square error performance test of multiple algorithms, achieving convergence after 500 iterations, with an MSE value of 0.02 and the best error performance; in the English class comprehensive quality prediction, the proposed MEP-NN algorithm has the best prediction accuracy, with a prediction mean of 86.56 points, closest to the actual value of 86 score, with a prediction accuracy of 94.56%. This shows that the proposed MEP-NN algorithm has excellent performance.
Keywords: neural networks; multi-expression programming; English language education; prediction. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=133860 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:281-300
Access Statistics for this article
More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().