Application research of improved Apriori algorithm in teaching evaluation of mobile platform for elderly education
Jun Chen
International Journal of Networking and Virtual Organisations, 2023, vol. 28, issue 2/3/4, 348-363
Abstract:
How to improve the teaching level of elderly education is of great practical significance to the current 'elderly' countries and regions. In this study, we improve the Apriori algorithm to analyse the teaching evaluation data, and test the performance and apply the analysis. The results show that the minimum and maximum runtime of the traditional Apriori algorithm is 23 ms and 177 ms respectively, while the minimum and maximum runtime of the improved Apriori algorithm is 17 ms and 163 ms respectively, which indicates a better classification performance in data mining. The basic information of teachers was analysed to show the association of teachers' titles, education and age. Compared with other algorithms, the improved Apriori algorithm saves running time to a certain extent, has better accuracy and precision than other algorithms, and can achieve effective analysis of teaching evaluation data on the mobile platform for senior education.
Keywords: Apriori algorithm; data mining; teaching evaluation; mobile platform; elderly education; association rules. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=133877 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:348-363
Access Statistics for this article
More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().