Research on big data personalised recommendation model based on deep reinforcement learning
Haifeng Shi and
Ling Shang
International Journal of Networking and Virtual Organisations, 2023, vol. 28, issue 2/3/4, 364-380
Abstract:
In order to mine the user's preference and interest from the user's historical behaviour in the big data to make a personalised recommendation, a DRR model is constructed based on deep reinforcement learning, and the performance of the DRR model is analysed through experiments. The results showed that the DRR model had a higher effect than other comparable models in the offline experimental evaluation, and the DRR-att value was the highest, reaching 0.9025. In the online simulation experiment, the average DRR-att value was the highest reward rate, reaching 0.7466. In general, the DRR model had better analysis ability and strong dynamic modelling ability and was good at using long-term rewards for decision making. In the parameter analysis experiment, the T value reached ten points. At the same time, the user state expression module can improve the accuracy of the DRR model and is effective in actual user personalised recommendations.
Keywords: deep reinforcement learning; personalised recommendation; dynamic modelling; effectiveness. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=133876 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:364-380
Access Statistics for this article
More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().