EconPapers    
Economics at your fingertips  
 

Research on long- and short-term music preference recommendation method integrating music emotional attention

Yan Yang

International Journal of Networking and Virtual Organisations, 2023, vol. 28, issue 2/3/4, 381-397

Abstract: In order to improve the effect of user music personalised recommendation, a hybrid music personalised recommendation model based on attention mechanism and multi-layer LSTM is proposed from the perspective of user music emotion and behaviour data. Using multi-layer LSTM to mine users' long-term and short-term music preferences, the model can analyse users' music emotional attributes in combination with attention mechanism. The research results show that the recommendation accuracy of the AM-LSTPM model is 97.86%, the recall rate is 98.91%, and the NDCG@10 values of the model on the two datasets are 0.5771 and 0.5437, which can effectively provide users with targeted personalised music recommendation services. The research, based on the modelling of users' long-term and short-term music preferences and integrating users' music emotional attention analysis, provide users with high-quality targeted music recommendation services, and have important value in promoting the improvement of music streaming media service quality.

Keywords: long short-term memory; LSTM; attention mechanism; music; personalised recommendation; emotion. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=133873 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:381-397

Access Statistics for this article

More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:381-397