EconPapers    
Economics at your fingertips  
 

A genetic algorithm for integrated lot sizing and supplier selection with defective items and storage and supplier capacity constraints

Mohammad Saeid Atabaki and Mohammad Mohammadi

International Journal of Operational Research, 2017, vol. 28, issue 2, 183-200

Abstract: The single product, multi-period inventory lot-sizing problem is one of the most common and basic problems in the production and inventory management literature. In this paper, we consider an environment with multiple suppliers and multiple periods with supplier capacity and storage capacity constraints. Moreover, considering defective items, we move one-step toward a real environment of inventory problems. In this paper, we present the nonlinear programming of the problem. Since complexity of lot sizing problems belongs to a class of NP-hard problems, we propose a genetic algorithm to solve the problem. We develop a unique encoding-decoding procedure, which creates feasible solutions. Using the Taguchi experimental design method, the optimum parameters of the proposed genetic algorithm are selected. The result comparison between proposed GA and GAMS software as an exact solution for small and medium size problems shows that we can trust the proposed GA as a solution methodology for larger problems.

Keywords: lot sizing; supplier selection; defective items; genetic algorithms; Taguchi methods; experimental design; GAMS Software; storage capacity; supplier capacity; capacity constraints; inventory management; nonlinear programming. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=81474 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:28:y:2017:i:2:p:183-200

Access Statistics for this article

More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijores:v:28:y:2017:i:2:p:183-200