EconPapers    
Economics at your fingertips  
 

A pruned Pareto set for multi-objective optimisation problems via particle swarm and simulated annealing

Ahmad Abubaker, Adam Baharum and Mahmoud Alrefaei

International Journal of Operational Research, 2019, vol. 35, issue 1, 67-86

Abstract: A Pareto optimal set, which is obtained from solving multi-objective optimisation problems, usually contain a large number of optimal solutions. This situation poses a challenge for decision makers in choosing a suitable solution from a large number of overlapping and complex Pareto solutions. This paper proposes a new procedure for solving multi-objective optimisation problems by reducing the size of the Pareto set. The procedure is divided into two major stages. In the first stage, the multi-objective simulated annealing algorithm is used to solve a multi-objective optimisation problem by constructing the Pareto optimal set. In the second stage, the automatic clustering algorithm is used to prune the Pareto set. This procedure is implemented to solve two multi-objective optimisation problems, namely, the 0/1 multi-objective multi-dimensional knapsack problem and the multi-objective inventory system. The procedure enables the decision maker to select an appropriate solution efficiently.

Keywords: multi-objective problem; inventory control; simulated annealing; particle swarm optimisation; automatic clustering. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=99544 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:35:y:2019:i:1:p:67-86

Access Statistics for this article

More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijores:v:35:y:2019:i:1:p:67-86