EconPapers    
Economics at your fingertips  
 

Optimisation of multi-plant capacitated lot-sizing problems in an integrated supply chain network using calibrated metaheuristic algorithms

Maryam Mohammadi, Siti Nurmaya Musa and Mohd Bin Omar

International Journal of Operational Research, 2020, vol. 39, issue 3, 325-363

Abstract: In this paper, a mathematical model for a multi-item multi-period capacitated lot-sizing problem in an integrated supply chain network composed of multiple suppliers, plants and distribution centres is developed. The combinations of several functions such as purchasing, production, storage, backordering and transportation are considered. The objective is to simultaneously determine the optimal raw material order quantity, production and inventory levels, and the transportation amount, so that the demand can be satisfied with the lowest possible cost. Transfer decisions between plants are made when demand at a plant can be fulfilled by other production sites to cope with the under-capacity and stock-out problems of that plant. Since the proposed model is NP-hard, a genetic algorithm is used to solve the model. To validate the results, particle swarm optimisation and imperialist competitive algorithm are applied to solve the model as well. The results show that genetic algorithm offers better solution compared to other algorithms.

Keywords: capacitated lot-sizing; multi-plant; production and distribution planning; integrated supply chain; optimisation; metaheuristic algorithms; genetic algorithm; GA; particle swarm optimisation; PSO; imperialist competitive algorithm; ICA. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=110478 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:39:y:2020:i:3:p:325-363

Access Statistics for this article

More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijores:v:39:y:2020:i:3:p:325-363