Solving a single period inventory model with fuzzy inequality
Anuradha Sahoo and
Jayanta Kumar Dash
International Journal of Operational Research, 2022, vol. 43, issue 3, 318-331
Abstract:
The purpose of this paper is to present a fuzzy chance-constrained single period inventory model (FCCSPIM) in which the fuzziness appears in the space constraint and objective function is crisp. Here the partial order relation exists in between a random variable and a real number. That means the probability of the event is discussed under vague data. Our approach for the solution process uses mostly fuzzy Zimmermann technique to convert the FCCSPIM into a proper deterministic equivalent. Then the resulting nonlinear deterministic model is solved by using LINGO software. The result indicate that the fuzzy programming approach is effective for the inventory problem. The applications of an optimisation model under uncertainty are used to solve day to day problems. Many methods were developed by using tools of mathematics, probability theory and stochastic process. Here, one new approach of fuzzy programming technique is introduced to obtain a deterministic form.
Keywords: single period inventory model; SPIM; chance constrained programming problem; fuzzy partial order relation. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=122337 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:43:y:2022:i:3:p:318-331
Access Statistics for this article
More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().