EconPapers    
Economics at your fingertips  
 

Multi-objective inventory model for material requirements planning with uncertain lead-time

Heibatolah Sadeghi and Anwar Mahmoodi

International Journal of Operational Research, 2022, vol. 43, issue 4, 391-415

Abstract: Material requirements planning (MRP), in its original form, utilises deterministic lead-time. However, the lead-time uncertainty is a fact of life in most of production systems. Therefore, developing MRP to deal with lead-time uncertainty is of great importance to academics and practitioners. In this paper, the problem of supply planning is considered in a multi-period, multi-level assembly system in which each sub-level has several components whose lead-times are uncertain. A two-objective mathematical model is presented not only to provide the appropriate number of periods in POQ policy, but also to determine the planning lead-time of each sub-level component. The aim of the model is to minimise the expected total cost, and to maximise the customer service level. Furthermore, two metaheuristic algorithms, namely non-dominated sorting genetic algorithm-II (NSGA-II), and multi-objective particle swarm optimisation (MOPSO) are proposed to solve the model. Finally, numerical experiments are carried out to compare the effectiveness of the procedures.

Keywords: supply planning; random lead-time; customer service level; periodic order quantity; POQ; multi-objective genetic algorithm. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=122811 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:43:y:2022:i:4:p:391-415

Access Statistics for this article

More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijores:v:43:y:2022:i:4:p:391-415