EconPapers    
Economics at your fingertips  
 

Hierarchical learning model for early prediction of coronary artery atherosclerosis

Muruganantham Sowmiya, B. Banu Rekha, Elangeeran Malar and K.R. Ashwin Kumaran

International Journal of Operational Research, 2022, vol. 44, issue 4, 473-495

Abstract: Artificial intelligence plays an ever-increasing role in developing human-like intelligent machines. In the modern world, physical activities in which people indulge have reduced and this has made them prone to heart diseases such as coronary artery disease (CAD). Coronary artery atherosclerosis (CAA) is one of the main causes of CAD and therefore early prediction of CAA is indispensable to prevent the risk of people getting affected by CAD. This work presents the machine learning model which provides more information on the exceptional cases while retaining the existing traditional classifier for early prediction of CAA. The proposed model performs outliner detection using local outlier factor (LOF) and class balancing using synthetic minority oversampling technique. Genetic algorithm is used for prominent feature selection and utilises support vector machine and neural network as the classifier. Two datasets namely UCI dataset and South African heart disease dataset are used to implement the model. Results show that the proposed model gives better accuracy for the above datasets along with the traditional methods.

Keywords: machine learning; support vector machine; SVM; neural network; local outlier factor; LOF; feature selection. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=125131 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijores:v:44:y:2022:i:4:p:473-495

Access Statistics for this article

More articles in International Journal of Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijores:v:44:y:2022:i:4:p:473-495